

29286 Ellensburg Avenue PO Box 666 Gold Beach, OR 97444 (541) 247-2755 info@currywatersheds.org www.currywatersheds.org

IN THIS ISSUE

Then & Now	2
Get Involved & Upcoming Events	7
Reports from the Field	8
Invasive Weed Management	14
Education & Outreach	16
Staff & Contractors	19

THENGNOW

The Evolving Field of Watershed Restoration

By Robbie Lascheck

We at the Curry Watersheds Partnership specialize in restoration. We are able to employ twelve staff members and bring in over a million dollars into our community annually thanks to how both our Partnership and the field of natural resource restoration have evolved over the years. For this and the next edition of Curry Currents we'll be looking back at where we started, and how far we've come, to celebrate that evolution.

The seed of the Curry Watersheds Partnership was planted back in 1994 when Curry County officially recognized the formation of the Curry County Coordinating Watershed Authority - a group of locals given the authority to "protect and enhance the quality of the watersheds within Curry County." This was a new idea enacted by the state that year to implement the Oregon Plan for Salmon. It was a then somewhat novel notion that often locals know best how to care for the lands and waters they reside in. The Curry Soil and Water Conservation District became the fiscal sponsor of the Curry County Coordinating Watershed Authority, which then became the South Coast and Lower Rogue Watershed Councils, and from that sprouted our Partnership.

As CWP has grown and changed in the past thirty or so years, so too has the science and profession of natural resource restoration. While the idea of natural resource restoration wasn't exactly new in the 1990s, that decade was the first in which real significant amounts of money were being spent in our region on projects whose sole purpose was to restore or enhance habitat for fish and wildlife. This was at least in part due to declining salmon populations, and our society deciding to prioritize and fund efforts to address that issue. In our region, the Southern Oregon Northern California population of coho salmon was listed as threatened under the Environmental Endangered Species Act in 1997. This brought attention, focus, and money to restoration work to save our salmon.

A significant issue identified early on in salmon-focused restoration was access for fish to move throughout watersheds. Many of our early projects were identifying and replacing fish passage barriers like road culverts that were either too small for salmon to pass through during winter flows, or perched culverts where the downstream end is above a creek which creates a drop or mini-waterfall too high for salmon to jump past (Figures 1 and 2).

Figure 1: A perched culvert found during a road survey in Lobster Creek in 1997

Figure 2: Assessing the condition of a culvert in Lobster Creek in 1998

We also knew the availability and quality of salmon habitat had severely degraded over the previous decades. Many of our streams had been ditched or simplified, and riparian vegetation had been removed to accommodate the needs of our growing communities. We worked diligently in the early years to restore those riparian areas by planting trees. Lots and lots of trees. We also knew that these streams historically had much more wood in them, which provides a myriad of benefits to salmon (e.g. increased stream complexity, protection from predators, sources of macroinvertebrates for food, etc.), so we placed large wood in streams (Figure 3).

Figure 3: Surveying large wood in Indian Creek in the Elk River in 2000

We still replace culverts, plant trees, and put large wood in streams, but how we do those things has changed a lot over the years, both through trial and error and the exponential growth of the science behind what we do. In-stream wood placements are a great example of this. In the early days we knew these streams should have more wood in them, and that juvenile salmon prefer these areas. Now we have a much stronger scientific understanding of why wood should be in streams, how much there used to be, and specifically how it benefits salmon (Figure 4). We also know so much more about how to properly install wood in a stream, how much and what size of wood to use, what angles to point logs in the channel, how to build log structures to achieve different goals, and how to do it all often on a tight budget and timeline (Figure 5).

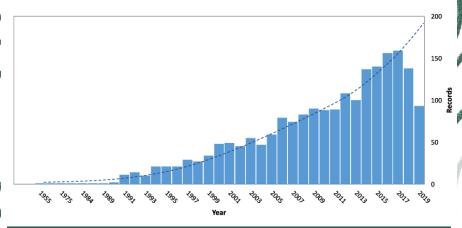


Figure 4: A graph of the number of scientific papers published on large wood in rivers in restoration-related scientific journals. From Swanson et al. (2020) Reflections on the history of research of large wood in rivers.

This evolution in both the science and profession of restoration has also led to an evolution in how we view the work. Much like our ancient common ancestor that first walked out of the ocean, we have moved our focus beyond the river channel and up onto the floodplain. Where once we were fixed on addressing particular issues within river channels, often specific to salmon, we now tend to look more broadly at an entire watershed and how the processes, habitats, flora, and fauna within it are all connected.

A lot of effort has been put into developing strategic plans to ensure that we get the most bang for our buck out of our work, both locally and at the state and federal levels. For instance, we now know that one of the primary limiting factors for those threatened coho salmon in many of our watersheds is a lack of winter rearing habitat. When large winter storms bring high flows to our rivers, juvenile salmon need off-channel areas where they're protected from those high flows, and can often find abundant food and cover as well. Many of our larger projects now are focused on those side channel or off-channel habitats (Figure 6). By increasing the availability and quality of these habitats, especially in crucial areas like estuaries, we're addressing that primary limiting factor in order to give future generations of salmon the best shot at surviving. These projects are also often designed with co-benefits in mind for not just salmon, but other aquatic species as well as birds, plants, and terrestrial animals as well.

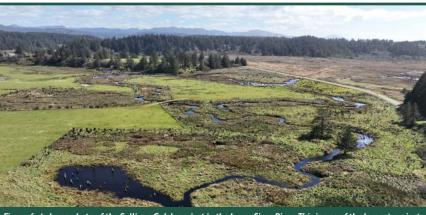
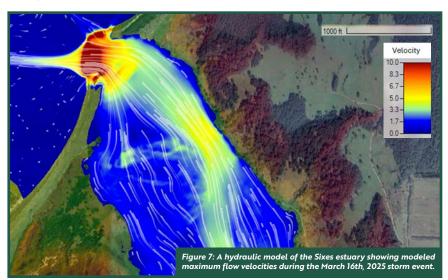



Figure 6: A drone photo of the Sullivan Gulch project in the lower Sixes River. This is one of the largest projects CWP has ever implemented, and is estimated to have more than doubled the amount of winter rearing habitat in the lower Sixes

Not only has our understanding of restoration evolved, but so have the technologies and tools available to us. In the 1990s a lot of work was done with just paper maps, limited tools, and gumption. Nowadays, advancements in computers and technology allow us to get a much better understanding of these watersheds, and what effects our projects have on them: LiDAR allows us to see detailed elevation maps of most of our service area, satellites and drones provide high-quality aerial photographs throughout the years, hydraulic engineers have developed computer models of watersheds (Figure 7), and many more technologies are utilized in all aspects of our work. While these have their benefits, it's still just as (if not more) important to be out on the ground in the community and know the basics like how to plant trees and work a shovel.

Our Partnership was built on a strong foundation of hard work and dedication to the cause of restoration. In the early days we broke a lot of ground to plant both tree seedlings and the seed of restoration in our community. As that seed has grown it has brought increases in knowledge, wisdom, and tools for us to do the hard work of restoration, but our roots remain planted in the same place. Hopefully in another 30 years the profession and science of restoration will reach unknown great heights, and we'll still be here doing the same hard work we've always done.

Local Board Meetings

Please contact us for information on how to join.

Curry Soil and Water Conservation District Last Tuesday of the month at 7:00 pm at the

Last Tuesday of the month at 7:00 pm at the Curry Watersheds Partnership Office

Contact Tammy Wills for more information: tammy.wills@currywatersheds.org

Lower Rogue Watershed Council

Third Tuesday of every other month at 3:30 pm at the Curry Watersheds Partnership Office.

Contact Kelly Timchak for more information: kelly@currywatersheds.org

South Coast Watershed Council

Third Monday of every odd-numbered month, rotating location between Port Orford, Gold Beach, and Brookings.

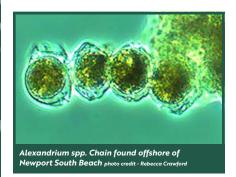
Contact Robbie Lascheck for more information: robbie.lascheck@currywatersheds.org

Curry Watersheds Trivia!

December 4th, 2025 | 5:30 - 7:30pm

Arch Rock Brewing Taproom

Come test your local watershed knowledge at our very first trivia night!


REPORTS from FIELD

Lower Rogue Watershed Council

Collaboration has been the name of the game with the Lower Rogue Watershed Council as of late! We continue to collaborate with Oregon Department of Fish & Wildlife (ODFW) on Harmful Algal Bloom (HAB) monitoring. We gather ocean water samples each week and send off to the ODFW labs to analyze the results and report out from several platforms. We continue to collaborate with the US Forest Service (USFS) on many projects, one of which is to survey for (and treat) invasive weeds that may have come up following the Flat Fire and Anvil Fires – both occurred in 2023. They are aware that there are many vehicles and people in the area during fires and they do their best to clean vehicles coming and going from the fires, but weeds still do what weeds do best – spread! It's a good thing they are also investing in the fire recovery efforts in these areas. These partnerships are extremely advantageous, especially in times like these when the government is unstable, but we can still continue the collaborative project.

Other areas of collaboration include putting on an aquatic invasives workshop in the Rogue Estuary. We worked with the Center for Lakes and Reservoirs at Portland State University to bring a regional placebased workshop to train professional staff working with aquatic plants in and around Curry County. Aquatic plants staff gave a brief overview about aquatic weeds followed by some thoughtful collection and plant identification in the field. Participants were guided through the "Quick Guide to Aquatic Weeds of Oregon," a simple, visual key for common emergent, floating leaf, floating, and submerged plants in the state. Several partners and staff supported the workshop by showing up for the training, including ODFW, USFS, BLM, and Curry SWCD. The guide can be found here: https://pdxscholar.library.pdx. edu/cgi/viewcontent.cgi?article=1060&context=centerforlakes_pub.

Finally, and most importantly, we are increasing collaboration within our own organization. The Curry Soil & Water Conservation District now has 12 employees, who are all doing important conservation work all over Curry County. With that many people running around doing projects, we needed to level up our internal coordination as well. The Partnership is achieving this through more collaborative check-ins, shared budgets, and shared calendars to start. Clear communication, fiscal transparency, trusting relationships, and strategy-led projects have been the foundation of all the work that we do in Curry County and is how we plan to remain successful into the future

Riparian

Offstream water systems are often a critical piece of infrastructure for managing livestock grazing. Although the design for any given water system depends on a number of site-specific and management-specific factors, a relatively common practice is to pump water uphill and over relatively long distances from a source to a storage tank. For these types of systems, advances in technology have greatly enhanced the automation of pumping water as it is needed, rather than relying on timers to turn the pump on at preset intervals or people to monitor water levels and turn the pump on manually.

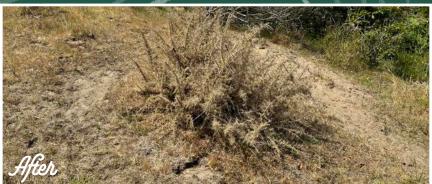
Specifically, solar-powered units equipped with radio communication capabilities can communicate information about water levels up to two miles as long as there is line-of-sight. One unit, the transmitter, is located at the storage tank. An optical sensor mounted in the storage tank tells the transmitter whether the tank is full of water or not. The transmitter relays this information to a second unit, the receiver, which is located at the pump. When the tank is not full, the receiver turns the pump on and water is sent to the tank. When the optical sensor in the tank goes under water, it tells the transmitter the tank is full, the transmitter sends the message to the receiver, and the receiver turns the pump off again. It's quite an elegant solution to controlling a pump from a distant water tank.

Monitoring

As the low-water season ends, the first significant rain events of the fall mark the end of another summer fieldwork season. This year, CWP monitoring program staff set out to remove the continuous temperature loggers from the Elk, Sixes, and Morton Creek basins at the end of September, before upcoming bumps in river flows swept them away. 2025 was the fourth year of continuous summer water temperature monitoring in 3 high-priority watersheds within the Sixes Subbasin, part of an ongoing effort to collect long-term water quality data throughout Curry County. The goal is to establish status and trend data to better assess the health of our watersheds, identify and quantify crucial cold water refugia habitat for keystone species (Chinook, coho, steelhead, etc...), and inform both ongoing and future restoration projects.

CWP staff deployed continuous temperature loggers in the Elk, Sixes, and Morton Creek at the beginning of the low-water season, placing them upstream, downstream, and within tributaries of interest. Temperature monitoring hardware was placed towards the bottom of the water column, tucked away from interference from direct sunlight and curious critters. Loggers were programmed to record in-stream temperature every 30 minutes throughout the summer to track water temperatures during the warmest months of the year. Excessively highwater temperatures can be detrimental to juvenile salmon/steelhead growth and migration and also leave watersheds more susceptible to toxics and harmful algal blooms.

CWP monitoring staff observed relatively extreme low-water conditions during the mid-summer this year, impacting intermittent tributaries like Anvil Creek (Elk) and Dry Creek (Sixes) the most. During especially low-water years, tributaries in the upper basins that contribute significant flow and temperature influence like Panther Creek (Elk) and South Fork (Sixes) offer vital, cool aquatic habitat for juvenile salmonids as they forage, grow, and prepare for their migration out to sea. We also saw encouraging preliminary temperature data from sites that have been enhanced as part of past restoration actions like Morton Creek (New River), Cedar Creek (Elk), and Greene Creek (Sixes).


Invasive Veed Invasive Veed Invasive Veed Go BIG or Go Home!

When it comes to invasive weed management it's a lot easier to see "change" with larger scale projects. Where once stood a solid acre of scotch broom, is now thriving with a diverse population of native plants. Which is the ultimate goal of any restoration project, to return it to a more natural condition. Attaining that picture perfect project can be a lot harder when that evolution is expected within the constraints of a funding cycle or a project deadline. Gorse for instance, takes a lifelong commitment to transition from a dense thicket to some form of functioning landscape. Without intense long-term management, invasive weeds will eventually reclaim what was once theirs again.

Will we ever win? The war on weeds is about as inevitable as your next hair cut or hair loss altogether. As some fear, the word eradication shouldn't even be used in the same sentence as invasive weeds or even used at all. Although we may not ever win the war, sometimes it's the small battles that contribute the most to our efforts.

Managing outlier weed infestations is by far the bang for your buck as you're avoiding a potential landslide of problems in the future. One gorse plant killed now before it's gone to seed, can save you years of costly management efforts down the road. How does that look from a restoration perspective? Often times that small plant or patch (if effectively managed) will give way to a host of natives that already exist on site or nearby. In a sense the real estate you just freed up will get quickly get absorbed or heal right back into its natural vegetative state! It's nice to be able to see a visible transformation in the landscape, but sometimes the efforts of the unnoticed can make the greatest impact.

Education & Outreach

We were busy this summer in the education/outreach world! We are trying to be more visible and active in the community by attending more outreach and education events that we may not have had the capacity for over the past few years.

/_///

Education

We continued to support Rotary at their Party in the Park event this year with an "Enchanted Scavenger Hunt" themed booth in which we partnered with Master Gardeners to create a forest setting inside of our tent. Children of all ages were given a "critter ID card" with information about a plant or animal that lives in their watershed, then went on the hunt to find them in our forest!

Curry Public Library invited us to a STEM day during their ASCEND Summer Reading Program. We brought educational activities for youth to build their own beaver dam, paint with different soil from their watersheds, and of course watershed lessons with our revamped stream trailer!

We also were able to spend a day at Lobster Creek 4H Camp where we taught lessons about aquatic macroinvertebrates. Campers were able to get hands-on experience searching for, catching and identifying over 10 different species of macroinvertebrates in Lobster Creek.

Outreach

Our Chetco and Elk River cleanups both had great turn outs this summer!

Over 30 volunteers attended Cherish the Chetco where they gathered trash while kayaking sections of the river from Redwood to Loeb Bar. They gathered over 20 bags of trash and collected 34 tires from river bars along the way. 16 volunteers attended our Experience the Elk river cleanup and biked from the Elk River Salmon Hatchery to Butler Bar. They collected over 10 bags of trash from the areas surrounding that stretch of the Elk River.

We also had our first official fundraiser on August 22nd at The Spoon in Langlois! They graciously hosted the event and provided dinner, drinks and dessert for our guests. We had 60 guests at this SOLD OUT event. Music was provided by members of the band Mercury Coast. Many local businesses across the county donated goods and services to support our raffles/ silent auction prizes. Thank you to our donors!

Departures

Barbara Grant, our Conservation Reserve Enhancement Program (CREP) Technician is hanging up her hat after more than 18 years of service to agricultural landowners in Coos and Curry counties. Many, many thanks for all your hard work, Barbara! You will be missed!!

Curry Watersheds Partnership Staff & Contractors

Annika Bratton Outreach & Education Coordinator

Samantha Carrasco Program Support Specialist

Liesl Coleman Curry Soil and Water Conservation District Manager

Barbara Grant NRCS Conservation Reserve Enhancement Program (CREP) Technician

Drew Harper Riparian Management Coordinator

Robbie Lascheck South Coast Watershed Council Coordinator

Jasper Marshall Monitoring Program Coordinator

Erin Minster Technical Coordinator

Jen Nelson Youth Education Program Specialist

Kelly Timchak Lower Roque Watershed Council Coordinator

Dustin Williams Vegetation Management Foreman

Tammy Wills Operations Coordinator

Matt Swanson Contracted Restoration Project Manager

Acknowledgements

Funding for the work mentioned above has come from the Bureau of Land Management, Oregon Watershed Enhancement Board, Gray Family Foundation, U.S. Fish & Wildlife Service, Wild Salmon Center, Bandon Dunes Charitable Foundation, Judith Ann Mogan Foundation, Athletica Brewing Company, Autzen Foundation, Oregon Department of Fish & Wildlife, US Forest Service, Oregon Parks & Recreation Department, Oregon Department of Agriculture, Oregon State Weed Board, and private donations.

Cover Caption: Aerial photos of Sullivan Gulch in the lower Sixes before (2015) and after (2024) restoration.

29286 Ellensburg Avenue Gold Beach, OR 97444 Phone: (541) 247-2755 info@currywatersheds.org www.currywatersheds.org Curry Watersheds Partnership includes the Curry County Soil and Water Conservation District, the South Coast and Lower Rogue Watershed Councils, and the Curry Watersheds Nonprofit, working together to support our communities to care for our lands and waters, now and into the future. We rely solely on grants and donations and you can make a donation by visiting our website, scanning the QR code above, or contacting us using the information provided.